4.5 Article

Experimental verification and optimization research on the energy absorption abilities of beetle elytron plate crash boxes

Journal

MATERIALS RESEARCH EXPRESS
Volume 6, Issue 11, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2053-1591/ab4f2c

Keywords

beetle elytra; biomimetic design; crash box; thin-walled structure; compression; energy absorbing

Funding

  1. National Natural Science Foundation of China [51875102]
  2. National Key R&D Program of China [2017YFC0703700]

Ask authors/readers for more resources

To develop a new type of biomimetic sandwich plate crash box inspired by beetle elytra (referred to as the beetle elytron plate (BEP) crash box) with a better energy absorption capability, we conducted experimental verification and optimization research on two methods proposed in our previous studies: changing the amplitude (A) of the deformation leading line predicted by the finite element method and setting the trabeculae in the middle of the honeycomb walls. The following results were determined. (1) The method of increasing A to reduce the peak force of the BEP crash box is effective, whereas the latter method is invalid. (2) The latter method is invalid because the unit structure (the BEP crash box) is different from the multivariate structure (the BEP) used to determine the prediction due to the change of constraint condition on the trabeculae provided by the honeycomb walls. (3) An optimum A of 1.0 is proposed for BEP crash boxes with better energy absorption abilities and more stable successively laminated deformation. Specifically, the main peak force of the BEP crash box is approximately the same as that of the conventional one, while the structural energy absorption (SEA) and load uniformity (LU) of BEP crash boxes are at least 3 times and between only one-third and one-fourth those of conventional crash box, respectively, meaning that BEP crash boxes can be directly used to replace conventional one and to significantly improve security. Thus, these results provide an experimental basis for further research on BEP crash boxes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available