4.3 Article

Fast fitting of reflectivity data of growing thin films using neural networks

Journal

JOURNAL OF APPLIED CRYSTALLOGRAPHY
Volume 52, Issue -, Pages 1342-1347

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S1600576719013311

Keywords

X-ray reflectivity; machine learning; organic semi-conductors; neural networks

Ask authors/readers for more resources

X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and alpha-sexithiophene] on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8-18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available