4.6 Article

Exploiting Deep Learning for Wind Power Forecasting Based on Big Data Analytics

Journal

APPLIED SCIENCES-BASEL
Volume 9, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/app9204417

Keywords

big data; data analytics; wind power; demand side management; energy management; forecasting; convolution neural network; deep learning

Ask authors/readers for more resources

Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon emission from fossil fuel based power generation). The incorporation of alternative low carbon energy generation, i.e., Renewable Energy Sources (RESs), becomes crucial for energy systems. Effective Demand Side Management (DSM) and RES incorporation enable power systems to maintain demand, supply balance and optimize energy in an environmentally friendly manner. The wind power is a popular energy source because of its environmental and economical benefits. However, the uncertainty of wind power makes its incorporation in energy systems really difficult. To mitigate the risk of demand-supply imbalance, an accurate estimation of wind power is essential. Recognizing this challenging task, an efficient deep learning based prediction model is proposed for wind power forecasting. The proposed model has two stages. In the first stage, Wavelet Packet Transform (WPT) is used to decompose the past wind power signals. Other than decomposed signals and lagged wind power, multiple exogenous inputs (such as, calendar variable and Numerical Weather Prediction (NWP)) are also used as input to forecast wind power. In the second stage, a new prediction model, Efficient Deep Convolution Neural Network (EDCNN), is employed to forecast wind power. A DSM scheme is formulated based on forecasted wind power, day-ahead demand and price. The proposed forecasting model's performance was evaluated on big data of Maine wind farm ISO NE, USA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available