4.7 Article

Redox-based memristive devices for new computing paradigm

Journal

APL MATERIALS
Volume 7, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.5129101

Keywords

-

Funding

  1. DFG (German Science Foundation) [SFB 917]
  2. W2/W3 program of the Helmholtz association

Ask authors/readers for more resources

Memristive devices have been a hot topic in nanoelectronics for the last two decades in both academia and industry. Originally proposed as digital (binary) nonvolatile random access memories, research in this field was predominantly driven by the search for higher performance solid-state drive technologies (e.g., flash replacement) or higher density memories (storage class memory). However, based on their large dynamic range in resistance with analog-tunability along with complex switching dynamics, memristive devices enable revolutionary novel functions and computing paradigms. We present the prospects, opportunities, and materials challenges of memristive devices in computing applications, both near and far terms. Memristive devices offer at least three main types of novel computing applications: in-memory computing, analog computing, and state dynamics. We will present the status in the understanding of the most common redox-based memristive devices while addressing the challenges that materials research will need to tackle in the future. In order to pave the way toward novel computing paradigms, a rational design of the materials stacks will be required, enabling nanoscale control over the ionic dynamics that gives these devices their variety of capabilities. (C) 2019 Author(s).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available