4.7 Article

Synthesis of a Zinc Oxide Nanoflower Photocatalyst from Sea Buckthorn Fruit for Degradation of Industrial Dyes in Wastewater Treatment

Journal

NANOMATERIALS
Volume 9, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/nano9121692

Keywords

sea buckthorn fruit; zinc oxide nanoflower; dye degradation; photocatalysis; UV illumination; Congo red; malachite green; eosin Y; methylene blue

Funding

  1. Korea Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry, & Fisheries (KIPET) [317007-3]

Ask authors/readers for more resources

Green synthesis of ZnO nanoparticles has attracted research attention as a sustainable method of avoiding the destructive effect of chemicals. We synthesized a flower-shaped zinc oxide (ZnO) nanoflower (NF) from sea buckthorn fruit (SBT) by co-precipitation and characterized it using X-ray powder diffraction (XRD), X-ray photo electronic microscopy (XPS), photoluminescence (PL), field emission transmission electron microscopy (FE-TEM), and Fourier-transform infrared (FT-IR) spectroscopy. The ability of the ZnO/NF to degrade cationic and anionic dyes, including malachite green (MG), Congo red (CR), methylene blue (MB), and eosin Y (EY), under ultraviolet illumination was studied. The photocatalyst degraded approximately 99% of the MG, MB, CR and EY dyes within 70, 70, 80, and 90 min of contact time, respectively, at a dye concentration of 15 mg/L, 5 mg/L, SBT-ZnO/NF degraded 100% of the MG, MB, CR and EY dyes within 23, 25, 28, and 30 min, respectively. The results indicate that SBT-ZnO/NFs as synthesized is an inexpensive, non-toxic, rapid, and reusable photocatalyst that can play an enhanced role in wastewater treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available