4.5 Review

DAMP and DIC: The role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC

Journal

BLOOD REVIEWS
Volume 30, Issue 4, Pages 257-261

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.blre.2015.12.004

Keywords

Disseminated intravascular coagulation DIC; Damage associated molecular pattern DAMP; Histones; Extracellular cell-free DNA; Factor VII-activating protease FSAP; Neutrophil extracellular traps NET; High mobility group box 1

Categories

Funding

  1. Grants-in-Aid for Scientific Research [15H05684] Funding Source: KAKEN

Ask authors/readers for more resources

Disseminated intravascular coagulation (DIC) is a heterogeneous group of disorders, which manifest as a spectrum of haemorrhage and thrombosis complicating many primary conditions including sepsis, trauma and malignancies. The pathophysiology of this condition is complex. In the recent years there is growing evidence that damage associated molecular patterns (DAMPs) play a crucial role in the pathogenesis of DIC. Upon cell death and/or cell activation of hematopoietic and parenchymal cells extracellular cell-free DNA as well as DNA binding proteins (e.g. histones and high mobility group box 1 protein [HMGB1]) are released into circulation. This release is a highly regulated process mediated among others by serine proteases, such as factor VII activating protease (FSAP) and DNase1. Circulating cell-free DNA has been demonstrated to influence primary and secondary hemostasis by inducing platelet aggregation, promoting coagulation activation, inhibition of fibrinolysis and directly interfering with clot stability. In this respect cell-free DNA in tissue as well as released into the circulation after neutrophil activation in the form of neutrophil extracellular traps (NETS) has been shown to be cytotoxic and highly procoagulant. DNA-binding proteins such as histones and HMGB1 are also strongly procoagulant and are involved in the pathogenesis of DIC. The present review gives an overview on how extracellular DNA is released into circulation and the structure of circulating DNA. In addition it summarizes the effect of extracellular DNA and DNA-binding proteins on platelet activation, plasmatic coagulation as well as fibrinolysis. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available