4.5 Article

Enhanced Performances of PVK/ZnO Nanorods/Graphene Heterostructure UV Photodetector via Piezo-Phototronic Interface Engineering

Journal

ADVANCED MATERIALS INTERFACES
Volume 6, Issue 23, Pages -

Publisher

WILEY
DOI: 10.1002/admi.201901365

Keywords

graphene; heterojunction; photodetectors; piezo-phototronic effect; ZnO nanorods

Funding

  1. National Natural Science Foundation of China [51702326, 51872296]
  2. Shenyang Science and Technology Program [18-013-0-52]
  3. Youth Innovation Promotion Association of the Chinese Academy of Sciences [2019197]
  4. Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-Sen University) [OEMT-2017-KF-02]

Ask authors/readers for more resources

The piezo-phototronic effect can effectively engineer the energy band structure at the local interface of piezo-semiconductor junction, and thus improve the performance of optoelectronics. In this work, a high-performance poly(9-vinylcarbazole) (PVK)/ZnO nanorods/graphene heterostructure photodetector is designed and fabricated using a multi-step process. By introducing a -1.093% compressive strain to the hybrid heterostructure, carrier-dynamics modulation at the local junctions can be induced by the piezoelectric polarization, and the photoresponsivity and the specific detectivity of the photodetector can be enhanced approximate to 440% and approximate to 132% under UV light illumination with the peak values up to 80.6 A W-1 and 2.3 x 10(11) Jones, respectively. The photoresponse enhancement is attributed to the piezopotential generated at PVK/ZnO and ZnO/graphene interfaces, which promote the separation and transfer of photogenerated carriers. Physical working mechanism behind the observed results is discussed via energy band diagram. This work not only presents a new way to achieve the higher performance in photodetectors by fully utilizing piezo-phototronic interface engineering but also provides a deep understanding of piezo-phototronic effect on optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available