4.0 Article

Characterization of hepcidin response to holotransferrin in novel recombinant TfR1 HepG2 cells

Journal

BLOOD CELLS MOLECULES AND DISEASES
Volume 61, Issue -, Pages 37-45

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bcmd.2016.06.008

Keywords

Hepcidin; Iron; HepG2; Hepatocyte; Transferrin

Categories

Funding

  1. University of Westminster

Ask authors/readers for more resources

Hepcidin is the key regulator of systemic iron homeostasis. The iron-sensing mechanisms and the role of intracellular iron in modulating hepatic hepcidin secretion are unclear. Therefore, we created a novel cell line, recombinant-TfR1 HepG2, expressing iron-response-element-independent TFRC mRNA to promote cellular iron-overload and examined the effect of excess holotransferrin (5 g/L) on cell-surface TfR1, iron content, hepcidin secretion and mRNA expressions of TFRC, HAMP, SLC40A1, HFE and TFR2. Results showed that the recombinant cells exceeded levels of cell-surface TfR1 in wild-type cells under basal (2.8-fold; p < 0.03) and holotransferrin-supplemented conditions for 24 h and 48 h (4.4- and 7.5-fold, respectively; p < 0.01). Also, these cells showed higher intracellular iron content than wild-type cells under basal (3-fold; p < 0.03) and holotransferrin-supplemented conditions (6.6-fold at 4 h; p < 0.01). However, hepcidin secretion was not higher than wild-type cells. Moreover, holotransferrin treatment to recombinant cells did not elevate HAMP responses compared to untreated or wild-type cells. In conclusion, increased intracellular iron content in recombinant cells did not increase hepcidin responses compared to wild-type cells, resembling hemochromatosis. Furthermore, TFR2 expression altered within 4 h of treatment, while HFE expression altered later at 24 h and 48 h, suggesting that TFR2 may function prior to HFE in HAMP regulation. (C) 2016 The Authors. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available