4.6 Article

Lifetime Analysis of Energy Storage Systems for Sustainable Transportation

Journal

SUSTAINABILITY
Volume 11, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/su11236731

Keywords

flywheel energy storage; FESS; e-mobility; battery; supercapacitor; lifetime comparison; charging station; renewable energy storage

Funding

  1. Austrian Research Promotion Agency (FFG) within the Electric Mobility Flagship Projects, 9th call [865447]
  2. Graz University of Technology

Ask authors/readers for more resources

On the path to a low-carbon future, advancements in energy storage seem to be achieved on a nearly daily basis. However, for the use-case of sustainable transportation, only a handful of technologies can be considered, as these technologies must be reliable, economical, and suitable for transportation applications. This paper describes the characteristics and aging process of two well-established and commercially available technologies, namely Lithium-Ion batteries and supercaps, and one less known system, flywheel energy storage, in the context of public transit buses. Beyond the obvious use-case of onboard energy storage, stationary buffer storage inside the required fast-charging stations for the electric vehicles is also discussed. Calculations and considerations are based on actual zero-emission buses operating in Graz, Austria. The main influencing parameters and effects related to energy storage aging are analyzed in detail. Based on the discussed aging behavior, advantages, disadvantages, and a techno-economic analysis for both use-cases is presented. A final suitability assessment of each energy storage technology concludes the use-case analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available