4.8 Article

Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film

Journal

NANO ENERGY
Volume 64, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2019.103929

Keywords

Sb2Se3; Thin film; Sputtering; Post-selenization; Planar heterojunction

Funding

  1. Key Project of Department of Education of Guangdong Province [2018KZDXM059]
  2. National Natural Science Foundation of China [61404086, U1813207, 11574217]
  3. Shenzhen Key Lab Fund [ZDSYS 20170228105421966]
  4. Science and Technology plan project of Shenzhen [JCYJ20180305124340951]

Ask authors/readers for more resources

Antimony selenide (Sb2Se3) is regarded as one of the key alternative absorber materials for conventional thin film solar cells due to its excellent optical and electrical properties. Here, we proposed a Sb2Se3 thin film solar cell fabricated using a two-step process magnetron sputtering followed by a post-selenization treatment, which enabled us to optimize the best quality of both the Sb2Se3 thin film and the Sb2Se3/CdS heterojunction interface. By tuning the selenization parameters, a Sb2Se3 thin film solar cell with high efficiency of 6.06% was achieved, the highest reported power conversion efficiency of sputtered Sb2Se3 planar heterojunction solar cells. Moreover, our device presented an outstanding open circuit voltage (V-oc) of 494 mV which is superior to those reported Sb2Se3 solar cells. State and density of defects showed that proper selenization temperature could effectively passivate deep defects for the films and thus improve the device performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available