4.8 Article

Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy

Journal

NANO ENERGY
Volume 64, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2019.103908

Keywords

Triboelectric nanogenerator; Pendulum; Super-robust and frequency-multiplied

Funding

  1. National Natural Science Foundation of China (NSFC) [51576161]
  2. 111 project [B16038]
  3. China Scholarship Council

Ask authors/readers for more resources

Mechanical energy in ambient, such as water wave, wind, vibration, and human activities, is a green energy that is widely distributed and universally achievable. However, this type of energy has ultra-low frequencies and variable amplitudes, so it is rather challenging to collect them at high efficiency. Here we report a pendulum inspired triboelectric nanogenerator (P-TENG), which could not only boost the output frequency multiple times using a pendulum structure, but also hugely improve the harvesting efficiency through a transformation of impact kinetic energy into potential energy. The P-TENG also has ultrahigh sensitivity and active response to mechanical triggering from a random direction and superior durability for long time operation. A single trigger from the environment, the P-TENG shows a continuous electrical output for 120 s at a frequency of 2 Hz, and its output energy of which is 14.2 times larger than the energy of conventional free-standing TENG. Owing to the air gap between the triboelectric layer and electrodes and the mechanism of electrostatic induction, the P-TENG can work with little frictional resistance and surface wearing, largely enhancing its robustness and durability. The network of P-TENGs was successfully demonstrated to scavenge water wave or wind energy as sustainable power sources. Given the features of exceptional output performance, unprecedented robustness and universal applicability resulting from distinctive mechanism and structure, the P-TENG is a promising method to efficiently harvest energy from the ambient environment with possibility contributing to the blue energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available