4.7 Article

Response of Mustard Microgreens to Different Wavelengths and Durations of UV-A LEDs

Journal

FRONTIERS IN PLANT SCIENCE
Volume 10, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2019.01153

Keywords

light-emitting diodes; UV-A; growth; antioxidants; mineral elements; mustard microgreens

Categories

Funding

  1. European Regional Development Fund [01.2.2-LMT-K-718-01-0049]
  2. Research Council of Lithuania (LMTLT)

Ask authors/readers for more resources

Ultraviolet A (UV-A) light-emitting diodes (LEDs) could serve as an effective tool for improving the content of health-promoting bioactive compounds in plants in controlled-environment agriculture (CEA) systems. The goal of this study was to investigate the effects of UV-A LEDs at different wavelengths (366, 390, and 402 nm) and durations (10 and 16 h) on the growth and phytochemical contents of mustard microgreens (Brassica juncea L. cv. Red Lion), when used as supplemental light to the main LED lighting system (with peak wavelengths of 447, 638, 665, and 731 nm). Plants were grown for 10 days under a total photon flux density (TPFD) of 300 mu mol m(-2) s(-1) and 16-h light/8-h dark period. Different UV-A wavelengths and irradiance durations had varied effects on mustard microgreens. Supplemental UV-A radiation did not affect biomass accumulation; however, the longest UV-A wavelength (402 nm) increased the leaf area of mustard microgreens, regardless of the duration of irradiance. The concentration of the total phenolic content and alpha-tocopherol mostly increased under 402-nm UV-A, while that of nitrates increased under 366- and 390-nm UV-A at both radiance durations. The contents of lutein/zeaxanthin and beta-carotene increased in response to the shortest UV-A wavelength (366 nm) at 10-h irradiance as well as longer UV-A wavelength (390 nm) at 16 h irradiance. The most positive effect on the accumulation of mineral elements, except iron, was observed under longer UV-A wavelengths at 16-h irradiance. Overall, these results suggest that properly composed UV-A LED parameters in LED lighting systems could improve the nutritional quality of mustard microgreens, without causing any adverse effects on plant growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available