4.7 Article

Study on the Intensity and Coherence Information of High-Resolution ALOS-2 SAR Images for Rapid Massive Landslide Mapping at a Pixel Level

Journal

REMOTE SENSING
Volume 11, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/rs11232808

Keywords

landslide; synthetic aperture radar (SAR); intensity; coherence; ALOS-2

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT)

Ask authors/readers for more resources

A rapid mapping of landslides following a disaster is important for coordinating emergency response and limiting rescue delays. A synthetic aperture radar (SAR) can provide a solution even in harsh weather and at night, due to its independence of weather and light, quick response, no contact and broad coverage. This study aimed to conduct a comprehensive exploration on the intensity and coherence information of three Advanced Land Observing Satellite-2 (ALOS-2) SAR images, for rapid massive landslide mapping in a pixel level, in order to provide a reference for future applications. Applied data were two pre-event and one post-event high-resolution ALOS-2 products. Studied area was in the east of Iburi, Hokkaido, Japan, where massive shallow landslides were triggered in the 2018 Hokkaido Eastern Iburi Earthquake. Potential parameters, including intensity difference (d), co-event correlation coefficient (r), correlation coefficient difference (Delta r), co-event coherence (gamma), and coherence difference (Delta gamma), were first selected and calculated based on a radar reflection mechanism, to facilitate rapid detection. Qualitative observation was then performed by overlapping ground truth landslides to calculated parameter images. Based on qualitative observation, an absolute value of d (d(abs1)) was applied to facility analyses, and a new parameter (d(abs2)) was proposed to avoid information loss in the calculation. After that, quantitative analyses of the six parameters (d(abs1), d(abs2), r, Delta r, gamma and Delta gamma) were performed by receiver operating characteristic. d(abs2) and Delta r were found to be favorable parameters, which had the highest AUC values of 0.82 and 0.75, and correctly classified 69.36% and 64.57% landslide and non-landslide pixels by appropriate thresholds. Finally, a discriminant function was developed, combining three relatively favorable parameters (d(abs2), Delta r, and Delta gamma) with one in each type, and achieved an overall accuracy of 74.31% for landslide mapping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available