4.7 Article

Tunable Structure and Properties of Segmented Thermoplastic Polyurethanes as a Function of Flexible Segment

Journal

POLYMERS
Volume 11, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/polym11121910

Keywords

thermoplastic polyurethane; flexible segment; degradation; phase segregation; mechanical and thermal properties

Funding

  1. UBE Chem Europ

Ask authors/readers for more resources

Segmented thermoplastic polyurethanes (PUs) were synthetized using macrodiols with different functional groups (carbonate, ester, and /or ether) as a segment with a molar mass of 1000 and 2000 g/mol, and 4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol as a rigid segment. The polyurethanes obtained reveal a wide variation of microphase separation degree that is correlated with mechanical properties and retention of tensile properties under degradation by heat, oil, weather, and water. Different techniques such as differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR), and synchrotron small-angle X-ray scattering (SAXS) were used to determine rigid-flexible segments' phase behaviour. Retention of tensile properties determines the stability of the samples under different external factors. This work reveals that pure polycarbonate-based macrodiols induce the highest degree of phase miscibility, better tensile properties, hardness shore A, and retention of tensile properties under external agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available