4.6 Article

Matrigel patterning reflects multicellular contractility

Journal

PLOS COMPUTATIONAL BIOLOGY
Volume 15, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1007431

Keywords

-

Funding

  1. NIH [GM102801]
  2. Hungarian National Research, Development and Innovation Office [K119359, ANN 117118]
  3. Bolyai Research Scholarship of the Hungarian Academy of Sciences

Ask authors/readers for more resources

Author summary Sensing and exerting forces is a fundamental aspect of tissue organization. We demonstrate that contractile cells form an intricate network structure when placed in a pliable culture environment, a phenomenon often associated with vascular networks and is being actively used to characterize endothelial cells in culture. We propose a computational model that operates with mechanical stresses, plastic deformation and material failure within the cell-extracellular matrix composite to explain the patterning process. In addition to re-interpret a decades-old tool of experimental cell biology, our work suggests a potentially high throughput computational assay to characterize cellular contractility within a soft ECM environment. Non-muscle myosin II (NMII)-induced multicellular contractility is essential for development, maintenance and remodeling of tissue morphologies. Dysregulation of the cytoskeleton can lead to birth defects or enable cancer progression. We demonstrate that the Matrigel patterning assay, widely used to characterize endothelial cells, is a highly sensitive tool to evaluate cell contractility within a soft extracellular matrix (ECM) environment. We propose a computational model to explore how cell-exerted contractile forces can tear up the cell-Matrigel composite material and gradually remodel it into a network structure. We identify measures that are characteristic for cellular contractility and can be obtained from image analysis of the recorded patterning process. The assay was calibrated by inhibition of NMII activity in A431 epithelial carcinoma cells either directly with blebbistatin or indirectly with Y27632 Rho kinase inhibitor. Using Matrigel patterning as a bioassay, we provide the first functional demonstration that overexpression of S100A4, a calcium-binding protein that is frequently overexpressed in metastatic tumors and inhibits NMIIA activity by inducing filament disassembly, effectively reduces cell contractility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available