4.7 Article

LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway

Journal

CELL AND BIOSCIENCE
Volume 9, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13578-019-0346-3

Keywords

LncRNA H19; miR-342-3p; IER3; Th17 cell differentiation; Endometriosis

Funding

  1. Science and Technology Colleges Innovation Team Support Program of Henan Province [18IRTSTHN024]
  2. Science and Technology Planning Project of Henan Province [201701002]
  3. National Natural Science Foundation of China [U1604172]

Ask authors/readers for more resources

Objective To investigate the mechanism of LncRNA H19 in Th17 cell differentiation and endometrial stromal cells (ESCs) proliferation in endometriosis (EMS). Methods LncRNA H19, miR-342-3p and IER3 expressions were detected by qRT-PCR and western blot. The percentage of Th17 cells/CD4+ T cells was detected by flow cytometry. IL-17 level was measured by ELISA. The interaction of miR-342-3p and IER3 was confirmed by Luciferase reporter assay. Results LncRNA H19 and IER3 expressions were down-regulated in mononuclear cells from peritoneal fluid (PFMCs) of patients with EMS or under Th17 differentiation conditions, whereas miR-342-3p expression was up-regulated and the percentage of Th17 cells was increased in PFMCs of patients with EMS or under Th17 differentiation conditions. Over-expression of LncRNA H19 decreased IL-17 level and the percentage of Th17 cells/CD4+ T cells. Besides, we confirmed that miR-342-3p could target to IER3 and negatively regulate IER3 expression. LncRNA H19 over-expression suppressed Th17 differentiation and ESC proliferation through regulating miR-342-3p/IER3. In vivo experiments showed LncRNA H19 over-expression suppressed the growth of Th17 cell differentiation-induced endometriosis-like lesions. Conclusion LncRNA H19 was down-regulated in PFMC of patients with EMS or under Th17 polarizing conditions, and LncRNA H19 over-expression suppressed Th17 cell differentiation and ESCs proliferation through miR-342-3p/IER3 pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available