4.7 Article

Systematic comparison of hUC-MSCs at various passages reveals the variations of signatures and therapeutic effect on acute graft-versus-host disease

Journal

STEM CELL RESEARCH & THERAPY
Volume 10, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13287-019-1478-4

Keywords

UC-MSCs; Various passages; Hematopoiesis; Graft-versus-host disease

Funding

  1. Natural Science Foundation of Tianjin [19JCQNJC12500]
  2. Science and Technology Project of Tianjin [17ZXSCSY00030]
  3. Wuqing Innovation Fund for Science and Technology Enterprises [WQKW-2018-HB10]
  4. China Postdoctoral Science Foundation [2019M661033]
  5. Nanyang Science and Technology Project of He-nan Province [JCQY012]
  6. National Natural Science Foundation of China [81330015, 81700119, 81900126]
  7. Beijing-Tianjin-Hebei Basic Research Project [18JCZDJC44600, H2018206423]
  8. Tianjin Science and Technology Project for Overseas Student [JH-20180070802]
  9. CAMS Innovation Fund for Medical Sciences [2016-I2M-1-017]
  10. CAMS Key Laboratory of Gene Therapy for Blood Diseases [2017PT31047, 2018PT31038, 2018PT32028]
  11. PUMC Graduate Innovation Fund [2014-0710-1004]
  12. Major Cultivation Projects of Achievement Transformation in Sichuan Colleges and Universities [18CZ0043]

Ask authors/readers for more resources

Background Mesenchymal stem cells are heterogenous populations with hematopoietic supporting and immunomodulating capacities. Enormous studies have focused on their preclinical or clinical therapeutic effects, yet the systematic study of continuous in vitro passages on signatures and functions of UC-MSCs at both the cellular and molecular levels is still lacking. Methods In this study, to systematically evaluate the biological properties of MSCs at various passages, we analyzed biomarker expression, cell proliferation and apoptosis, chromosome karyotype, and tri-lineage differentiation potential. Subsequently, we took advantage of whole-exome sequencing to compare the somatic hypermutation of hUC-MSCs at P3, P6, and P15 including SNV and INDEL mutations. In addition, to explore the safety of the abovementioned hUC-MSCs, we performed metabolic pathway enrichment analysis and in vivo transplantation analysis. Furthermore, we cocultured the abovementioned hUC-MSCs with UCB-CD34(+) HSCs to evaluate their hematopoietic supporting capacity in vitro. Finally, we transplanted the cells into acute graft-versus-host disease (aGVHD) mice to further evaluate their therapeutic effect in vivo. Results The hUC-MSCs at P3, P6, and P15 showed similar morphology, biomarker expression, and cytokine secretion. hUC-MSCs at P15 had advantages on adipogenic differentiation and some cytokine secretion such as IL-6 and VEGF, with disadvantages on cell proliferation, apoptosis, and osteogenic and chondrogenic differentiation potential. Based on the SNP data of 334,378 exons and bioinformatic analyses, we found the somatic point mutations could be divided into 96 subsets and formed 30 kinds of signatures but did not show correlation with risk of tumorigenesis, which was confirmed by the in vivo transplantation experiments. However, hUC-MSCs at P15 showed impaired hematologic supporting effect in vitro and declined therapeutic effect on aGVHD in vivo. Conclusions In this study, we systematically evaluated the biological and genetic properties of hUC-MSCs at various passages. Our findings have provided new references for safety and effectiveness assessments, which will provide overwhelming evidence for the safety of hUC-MSCs after continuous in vitro passages both at the cellular and molecular levels for the first time. Taken together, our studies could help understand the controversial effects of disease treatment and benefit the clinical research of UC-MSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available