4.7 Article

Projected slow down of South Indian Ocean circulation

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-54092-3

Keywords

-

Funding

  1. Australian Research Council (ARC) Centre of Excellence for Climate Extremes [CE110001028]
  2. National Computational Infrastructure at the Australian National University, Canberra
  3. ARC [FT160100495, DP180101251]

Ask authors/readers for more resources

Using an ensemble of 28 climate models, we examine hindcasts and 'business as usual' future changes to large-scale South Indian Ocean dynamics. We compare model ensemble seasonal-to-annual volume transports to observations and explore drivers of past and future circulation variability and change. Off the west coast of Australia, models consistently project a weakening of the Leeuwin Current and Undercurrent due to reduced onshore flow and downwelling. The reduced onshore flow is related to changes in the alongshore pressure gradient. While the alongshore pressure gradient change is consistent with the Indonesian Throughflow projected weakening, we found no inter-model relationship between these changes. In the south-western Indian Ocean, the models project a robust weakening of the North East and South East Madagascar Currents, Agulhas Current and transport through the Mozambique Channel. This reduced Indian Ocean western boundary flow is partly associated with a weaker Indonesian Throughflow and overturning circulation, where the latter is related to a decrease in the convergence of deep Southern Ocean waters into the Indian Ocean. In contrast to the weakening of other features, the westward flowing Agulhas Current extension south of Africa is projected to strengthen, which is consistent with an intensification of the Antarctic Circumpolar Current.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available