4.7 Article

Improving the Real-time Marine Forecasting of the Northern South China Sea by Assimilation of Glider-observed T/S Profiles

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-54241-8

Keywords

-

Funding

  1. Innovation Research Group of National Natural Science Foundation of China [41521005]
  2. National Natural Science Foundation of China [41676016, U1709202, 41776028]
  3. Major Projects of the National Natural Science Foundation of China [41890851]
  4. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA13030103, XDA13030201, XDA13030202, XDB06020101]
  5. Science and Technology Program of Guangzhou, China [201607020043]
  6. CAS/SAFEA International Partnership Program for Creative Research Teams, Science and Technology Planning Project of Guangdong Province, China [2015A020217009]
  7. Chinese Academy of Sciences [ISEE2018PY05]

Ask authors/readers for more resources

Prediction of marine conditions is notoriously challenging in the northern South China Sea (NSCS) due to inadequate observations in the region. The underwater gliders that were developed during the past decade may provide observing platforms that could produce required observations. During a field experiment, temperature/salinity (T/S) profiles from a set of underwater gliders were assimilated into a real-time marine forecasting system, along with the assimilation of climatological monthly mean Argo data to constrain the basin-wide model biases. The results show that, in addition to the reduction of the basin-wide model biases by the assimilation of the climatological monthly mean Argo data, the assimilation of glider-observed T/S profiles is efficient to reduce the local biases of the NSCS marine forecasting by as much as 28-31% (19-36%) in 24 h to 120 h forecasts for temperature (salinity) from sea surface to a depth of 1000 m. Our results imply that the real-time marine forecasting for the NSCS can largely benefit from a sustainable glider observing network of the NSCS in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available