4.6 Article

One-dimensional photonic crystal for Bloch surface waves and radiation modes-based sensing

Journal

OPTICAL MATERIALS EXPRESS
Volume 9, Issue 10, Pages 4009-4022

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OME.9.004009

Keywords

-

Funding

  1. ERDF/ESF project New Composite Materials for Environmental Applications [CZ.02.1.01/0.0/0.0/17_048/0007399, SP2019/26]
  2. city of Ostrava
  3. Czech Science Foundation [18-22102, SP2019/92]

Ask authors/readers for more resources

We report on a one-dimensional photonic crystal (1DPhC) represented by a multilayer structure used for a surface plasmon-like sensing based on Bloch surface waves and radiation modes employing a structure comprising a glass substrate and four bilayers of TiO2/SiO2 with a termination layer of TiO2. We model the reflectance responses in the Kretschmann configuration with a coupling prism made of BK7 glass and express the reflectances for both (s and p) polarizations in the spectral domain for various angles of incidence to show that a sharp dip associated with the Bloch surface wave (BSW) excitation is obtained in p polarization when an external medium (analyte) is air. For s-polarized wave BSW is not excited and a shallow dip associated with the guided mode excitation is obtained for a liquid analyte (water). For decreasing angle of incidence, the dip depth is substantially increased, and resonance thus obtained is comparable in magnitude with resonance commonly exhibited by SPR-based sensors. In addition, we revealed that the resonances in s-polarization are obtained for other analytes. The surface plasmon-like sensing concept was verified experimentally in the Kretschmann configuration for the guided mode transformed into the radiation mode with a negative and constant sensitivity of -169 nm/RIU, and a detection limit of 5.9 x 10(-5) RIU. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available