4.6 Article

Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective

Journal

MATERIALS
Volume 12, Issue 22, Pages -

Publisher

MDPI
DOI: 10.3390/ma12223673

Keywords

additive manufacturing; powder bed fusion; selective laser melting; regular mixing; ball milling; flowability; Ti-6Al-4V

Ask authors/readers for more resources

This research aims at evaluating the characteristics of the 5 wt.% B4C/Ti-6Al-4V composite powder feedstock prepared by two different categories of mechanical mixing for powder bed fusion (PBF) additive manufacturing (AM) of metal matrix composites (MMCs). Microstructural features, particle size, size distribution, sphericity, conditioned bulk density and flow behavior of the developed powders were examined. The flowability of the regularly mixed powders was significantly lower than that of the Ti-6Al-4V powder. However, the flowability of the ball-milled systems was a significant function of the milling time. The decrease in the flowability of the 2 h ball-milled powder compared to the Ti-6Al-4V powder was attributed to the mechanical interlocking and the entangling caused by the B4C particles fully decorating the Ti-6Al-4V particles. Although the flattened/irregular shape of powder particles in the 6 h milled system acted to reduce the flowability, the overall surface area reduction led to higher flowability than that for the 2 h milling case. Regardless of the mixing method, incorporation of B4C particles into the system decreased the apparent density of the Ti-6Al-4V powder. The composite powder obtained by 2 h of ball milling was suggested as the best possible condition, meeting the requirements of PBF-AM processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available