4.5 Article

Relative Cosolute Size Influences the Kinetics of Protein-Protein Interactions

Journal

BIOPHYSICAL JOURNAL
Volume 109, Issue 3, Pages 510-520

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2015.06.043

Keywords

-

Categories

Funding

  1. National Institutes of Health/National Institute of General Medical Sciences (Bethesda, MD) [GM097553, GM104290]
  2. William Wheless III professorship
  3. Division Of Physics
  4. Direct For Mathematical & Physical Scien [1427654] Funding Source: National Science Foundation

Ask authors/readers for more resources

Protein signaling occurs in crowded intracellular environments, and while high concentrations of macromolecules are postulated to modulate protein-protein interactions, analysis of their impact at each step of the reaction pathway has not been systematically addressed. Potential cosolute-induced alterations in target association are particularly important for a signaling molecule like calmodulin (CaM), where competition among >300 targets governs which pathways are selectively activated. To explore how high concentrations of cosolutes influence CaM-target affinity and kinetics, we methodically investigated each step of the CaM-target binding mechanism under crowded or osmolyte-rich environments mimicked by ficoll-70, dextran-10, and sucrose. All cosolutes stabilized compact conformers of CaM and modulated association kinetics by affecting diffusion and rates of conformational change; however, the results showed that differently sized molecules had variable effects to enhance or impede unique steps of the association pathway. On- and off-rates were modulated by all cosolutes in a compensatory fashion, producing little change in steady-state affinity. From this work insights were gained on how high concentrations of inert crowding agents and osmolytes fit into a kinetic framework to describe protein-protein interactions relevant for cellular signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available