4.6 Article

Morphology of Composite Fe@Au Submicron Particles, Produced with Ultrasonic Spray Pyrolysis and Potential for Synthesis of Fe@Au Core-Shell Particles

Journal

MATERIALS
Volume 12, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/ma12203326

Keywords

Ultrasonic Spray Pyrolysis; core-shell nanostructures; Fe@Au; iron oxide particles; Au nanoparticles; nanoparticle morphology

Funding

  1. Slovenian Research Agency [P2-0120, P2-0132, BI-DE/17-19-12]

Ask authors/readers for more resources

Iron core-gold shell (Fe@Au) nanoparticles are prominent for their magnetic and optical properties, which are especially beneficial for biomedical uses. Some experiments were carried out to produce Fe@Au particles with a one-step synthesis method, Ultrasonic Spray Pyrolysis (USP), which is able to produce the particles in a continuous process. The Fe@Au particles were produced with USP from a precursor solution with dissolved Iron (III) chloride and Gold (III) chloride, with Fe/Au concentration ratios ranging from 0.1 to 4. The resulting products are larger Fe oxide particles (mostly maghemite Fe2O3), with mean sizes of about 260-390 nm, decorated with Au nanoparticles (AuNPs) with mean sizes of around 24-67 nm. The Fe oxide core particles are mostly spherical in all of the experiments, while the AuNPs become increasingly irregular and more heavily agglomerated with lower Fe/Au concentration ratios in the precursor solution. The resulting particle morphology from these experiments is caused by surface chemistry and particle to solvent interactions during particle formation inside the USP system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available