4.6 Article

Preliminary Characterization of Novel LDPE-Based Wear-Resistant Composite Suitable for FDM 3D Printing

Journal

MATERIALS
Volume 12, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/ma12162520

Keywords

FDM printing; glass wastes; low-density polyethylene; composite; friction; wear

Funding

  1. Silesian University of Technology [11/030/RGJ19/0231]

Ask authors/readers for more resources

Low-density polyethylene (LDPE) composites reinforced with finely powdered waste glass were identified as a potential material for 3D printed structures for use in low-duty frictional applications. A recently published 3D printing model was used to calculate the limits in the filament feed rate and printing speed. Tribological tests (pin-on-disc method) of the printed composites were performed for different print-path directions. Differential scanning calorimetry (DSC) was performed on the samples and the composites showed a higher crystallinity compared with LDPE, which partially explains the higher elastic modulus of the composites determined during static tensile tests. Using a fine glass powder as reinforcement improved the wear resistance of LDPE by 50% due to the formation of a sliding film on the sample's surface. An evident effect of friction direction vs. the printed path direction on wear was found; which was likely related to differences in the removal of friction products from the friction area for different print-path directions. The LDPE composites with fine waste glass particles are promising materials for low-duty frictional applications and should be the subject of further research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available