4.4 Article

New procedure for determining equivalent deep-water wave height and design wave heights under irregular wave conditions

Publisher

SOC NAVAL ARCHITECTS KOREA
DOI: 10.1016/j.ijnaoe.2019.09.002

Keywords

Irregular wave deformation; Equivalent deep-water wave height; Design wave height; Nonlinear wave shoaling; 2D wave propagation; Wave setup; Surfbeat

Funding

  1. Korea Institute of Ocean Science and Technology in relation to the project, Construction of Ocean Research Station and their Application Studies - Ministry of Ocean and Fisheries, Korea, in 2018

Ask authors/readers for more resources

Many coastal engineering designs utilize empirical formulas containing the Equivalent Deep-water Wave Height (EDWH), which is normally given a priori. However, no studies have explicitly discussed a method for determining the EDWH and the resulting design wave heights (DEWH) under irregular wave conditions. Unfortunately, it has been the case in many design practices that the EDWH is incorrectly estimated by dividing the Shallow-water Wave Height (SWH) at the structural position with its corresponding shoaling coefficient of regular wave. The present study reexamines the relationship between the Shallow-water Wave Height (SWH) at the structural position and its corresponding EDWH. Then, a new procedure is proposed to facilitate the correct estimation of EDWH. In this procedure, the EDWH and DEWH are determined differently according to the wave propagation model used to estimate the SWH. For this, Goda's original method for nonlinear irregular wave deformation is extended to produce values for linear shoaling. Finally, exemplary calculations are performed to assess the possible errors caused by a misuse of the wave height calculation procedure. The relative errors with respect to the correct values could exceed 20%, potentially leading to a significant under-design of coastal or harbor structures in some cases. (C) 2019 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available