4.8 Article

Operando Observations of SEI Film Evolution by Mass-Sensitive Scanning Transmission Electron Microscopy

Journal

ADVANCED ENERGY MATERIALS
Volume 9, Issue 45, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201902675

Keywords

liquid cell electron microscopy; lithium-ion batteries; lithium-metal batteries; scanning transmission electron microscopy; solid electrolyte interphase

Funding

  1. MOST 973 of China [2015CB856800]
  2. Natural Science Foundation of China [51821001, 11704245]
  3. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
  4. Whiting School of Engineering, Johns Hopkins University

Ask authors/readers for more resources

The solid electrolyte interphase (SEI) spontaneously formed on anode surfaces as a passivation layer plays a critical role in the lithium dissolution and deposition upon discharge/charge in lithium ion batteries and lithium-metal batteries. The formation kinetics and failure of the SEI films are the key factors determining the safety, power capability, and cycle life of lithium ion and lithium-metal batteries. Since SEI films evolve with the volumetric and interfacial changes of anodes, it is technically challenging in experimental study of SEI kinetics. Here operando observations are reported of SEI formation, growth, and failure at a high current density by utilizing a mass-sensitive Cs-corrected scanning transmission electron microscopy. The sub-nano-scale observations reveal a bilayer hybrid structure of SEI films and demonstrate the radical assisted SEI growth after the SEI thickness beyond the electron tunneling regime. The failure of SEI films is associated with rapid dissolution of inorganic layers when they directly contact with the electrolyte in broken SEI films. The initiation of cracks in SEI films is caused by heterogeneous volume changes of the electrodes during delithiation. These microscopic insights have important implications in understanding SEI kinetics and in developing high-performance anodes with the formation of robust SEI films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available