4.8 Review

Additive Engineering for Efficient and Stable Perovskite Solar Cells

Journal

ADVANCED ENERGY MATERIALS
Volume 10, Issue 13, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201902579

Keywords

additives; defect passivation; Lewis acid; perovskite solar cells; stability

Ask authors/readers for more resources

Perovskite solar cells (PSCs) have reached a certified 25.2% efficiency in 2019 due to their high absorption coefficient, high carrier mobility, long diffusion length, and tunable direct bandgap. However, due to the nature of solution processing and rapid crystal growth of perovskite thin films, a variety of defects can form as a result of the precursor compositions and processing conditions. The use of additives can affect perovskite crystallization and film formation, defect passivation in the bulk and/or at the surface, as well as influence the interface tuning of structure and energetics. Here, recent progress in additive engineering during perovskite film formation is discussed according to the following common categories: Lewis acid (e.g., metal cations, fullerene derivatives), Lewis base based on the donor type (e.g., O-donor, S-donor, and N-donor), ammonium salts, low-dimensional perovskites, and ionic liquid. Various additive-assisted strategies for interface optimization are then summarized; additives include modifiers to improve electron- and hole-transport layers as well as those to modify perovskite surface properties. Finally, an outlook is provided on research trends with respect to additive engineering in PSC development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available