4.8 Article

Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-12933-9

Keywords

-

Funding

  1. Israel Science Foundation
  2. Minerva Center for Biohybrid Complex Systems

Ask authors/readers for more resources

DNA origami tiles provide nanostructures for the spatial and temporal control of functional loads on the scaffolds. Here we introduce the active generation of nanoholes in the origami scaffolds using DNAzymes or light as triggers and present the programmed and switchable catalysis in the resulting nanocavities. We engineer window domains locked into the origami scaffolds by substrates of the Zn2+-ion- or Pb2+-ion-dependent DNAzymes. Using Zn2+ ions and/or Pb2+ ions, the programmed unlocking of the window domains is demonstrated. The tailored functionalization of the origami scaffolds allows the programmed operation of catalytic processes in the confined nanocavities. Also, the window domain is integrated into the origami scaffold using photoisomerizable azobenzene-modified locks. The cyclic photoisomerization of the locks between the cis and trans states leads to a reversible opening and closure of the nanoholes and to the cyclic light-induced switching of catalytic processes in the nanocavities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available