4.8 Article

A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-12510-0

Keywords

-

Funding

  1. National Key Projects for Fundamental Research and Development of China [2018YFB1502002, 2017YFA0206904, 2017YFA0206900, 2016YFB0600901]
  2. National Natural Science Foundation of China [51825205, 51772305, 51572270, U1662118, 21871279, 21802154]
  3. Beijing Natural Science Foundation [2191002, 2182078, 2194089]
  4. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB17000000]
  5. Royal Society-Newton Advanced Fellowship [NA170422]
  6. International Partnership Program of Chinese Academy of Sciences [GJHZ1819, GJHZ201974]
  7. Beijing Municipal Science and Technology Project [Z181100005118007]
  8. K. C. Wong Education Foundation
  9. Youth Innovation Promotion Association of the CAS
  10. Energy Education Trust of New Zealand
  11. MacDiarmid Institute for Advanced Materials and Nanotechnology

Ask authors/readers for more resources

There is interest in metal single atom catalysts due to their remarkable activity and stability. However, the synthesis of metal single atom catalysts remains somewhat ad hoc, with no universal strategy yet reported that allows their generic synthesis. Herein, we report a universal synthetic strategy that allows the synthesis of transition metal single atom catalysts containing Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Pt or combinations thereof. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy confirm that the transition metal atoms are uniformly dispersed over a carbon black support. The introduced synthetic method allows the production of carbon-supported metal single atom catalysts in large quantities (>1 kg scale) with high metal loadings. A Ni single atom catalyst exhibits outstanding activity for electrochemical reduction of carbon dioxide to carbon monoxide, achieving a 98.9% Faradaic efficiency at -1.2 V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available