4.2 Article

Mitochondrial genetics revisited

Journal

YEAST
Volume 37, Issue 2, Pages 191-205

Publisher

WILEY
DOI: 10.1002/yea.3445

Keywords

concatemers; evolution; incompatibility; intron homing; recombination; yeast

Ask authors/readers for more resources

Mitochondrial genetics started decades ago with the discovery of yeast mutants that ignored the Mendelian rules of inheritance. Today, the many known DNA sequences of this second eukaryotic genome illustrate its eccentricity in terms of informational content and functional organisation, suggesting a yet incomplete understanding of its evolution. The hereditary transmission of mitochondrial alleles relies on complex mixes of molecular and cellular mechanisms in which recombination and limited sampling, two sources of rapid genetic changes, play central roles. It is also under the influence of invasive genetic elements whose inconstant distribution in mitochondrial genomes suggests rapid turnovers in evolving populations. This susceptibility to changes contrasts with the development of specific functional interactions between the mitochondrial and nuclear genetic compartments, a trend that is prone to limit the genetic exchanges between distinct lineages. It is perhaps this opposition and the discordant inheritance between mitochondrial and nuclear genomes that best explain the maintenance of a second genome and a second independent protein synthesising machinery in eukaryotic cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available