4.2 Article Proceedings Paper

Deletion of the N-terminal domain of the yeast vacuolar (Na+,K+)/H+ antiporter Vnx1p improves salt tolerance in yeast and transgenic Arabidopsis

Journal

YEAST
Volume 37, Issue 1, Pages 173-185

Publisher

WILEY
DOI: 10.1002/yea.3450

Keywords

(Na+; K+); H+ antiporters; Arabidopsis; ion transport; salt tolerance; vacuoles; yeast

Ask authors/readers for more resources

Cation/proton antiporters play a major role in the control of cytosolic ion concentrations in prokaryotes and eukaryotes organisms. In yeast, we previously demonstrated that Vnx1p is a vacuolar monovalent cation/H+ exchanger showing Na+/H+ and K+/H+ antiporter activity. We have also shown that disruption of VNX1 results in an almost complete abolishment of vacuolar Na+/H+ exchange, but yeast cells overexpressing the complete protein do not show improved salinity tolerance. In this study, we have identified an autoinhibitory N-terminal domain and have engineered a constitutively activated version of Vnx1p, by removing this domain. Contrary to the wild type protein, the activated protein has a pronounced effect on yeast salt tolerance and vacuolar pH. Expression of this truncated VNX1 gene also improves Arabidopsis salt tolerance and increases Na+ and K+ accumulation of salt grown plants thus suggesting a biotechnological potential of activated Vnx1p to improve salt tolerance of crop plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available