4.7 Article

Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment

Journal

BIOTECHNOLOGY FOR BIOFUELS
Volume 9, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s13068-015-0412-y

Keywords

Biological solubilization; Lignocellulose; Cotreatment

Funding

  1. BioEnergy Science Center (BESC)
  2. Office of Biological and Environmental Research in the DOE Office of Science
  3. National Science Foundation [2013142496]
  4. National Science Foundation Plant Genome Program [DBI-0421683, IOS-0923992]
  5. Mascoma Corp.
  6. Link Foundation

Ask authors/readers for more resources

Background: Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. To further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions. Results: Carbohydrate solubilization of mid-season harvested switchgrass after 5 days ranged from 24 % for Caldicellulosiruptor bescii to 65 % for Clostridium thermocellum, with intermediate values for a thermophilic horse manure enrichment, Clostridium clariflavum, Clostridium cellulolyticum, and simultaneous saccharification and fermentation (SSF) featuring a fungal cellulase cocktail and yeast. Under a variety of conditions, solubilization yields were about twice as high for C. thermocellum compared to fungal cellulase. Solubilization of mid-season harvested switchgrass was about twice that of senescent switchgrass. Lower yields and greater dependence on particle size were observed for Populus as compared to switchgrass. Trends observed from data drawn from six conversion systems and three substrates, including both time course and end-point data, were (1) equal fractional solubilization of glucan and xylan, (2) no biological solubilization of the non-carbohydrate fraction of biomass, and (3) higher solubilization for three of the four bacterial cultures tested as compared to the fungal cellulase system. Brief (5 min) ball milling of solids remaining after fermentation of senescent switchgrass by C. thermocellum nearly doubled carbohydrate solubilization upon reinnoculation as compared to a control without milling. Greater particle size reduction and solubilization were observed for milling of partially fermented solids than for unfermented solids. Physical disruption of cellulosic feedstocks after initiation of fermentation, termed cotreatment, warrants further study. Conclusions: While the ability to achieve significant solubilization of minimally pretreated switchgrass is widespread, a fivefold difference between the most and least effective biocatalyst-feedstock combinations was observed. Starting with nature's best biomass-solubilizing systems may enable a reduction in the amount of non-biological processing required, and in particular substitution of cotreatment for pretreatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available