4.7 Article

Rapid sonochemical water-based synthesis of functionalized zinc sulfide quantum dots: Study of capping agent effect on photocatalytic activity

Journal

ULTRASONICS SONOCHEMISTRY
Volume 57, Issue -, Pages 139-146

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultsonch.2019.05.019

Keywords

ZnS QDs; Capping agent; Photodegradation process; Crystal violet

Funding

  1. Yasouj University [Gryu-89131306]

Ask authors/readers for more resources

This study presents a rapid water-based chemical precipitation method for synthesis of zinc sulfide (ZnS) quantum dots (QDs), under the ultrasonic radiation, using two capping agents; including 2-mercaptoethanol and l-cysteine. It is demonstrated that by applying ultrasonic radiation, the synthesis time can be significantly decreased. The effect of capping agent type on the color specifications (using colorimetry), absorption spectra (using ultraviolet-visible absorption spectroscopy) and ZnS structure (using X-ray diffraction) are investigated. The results of the research indicate that the as-synthesized QDs were cubic structures with dimensions less than 10 nm. After characterization, the QDs samples were performed as nano-scaled photoatalysts, through a UV-driven photodegradation process for the degradation of crystalline violet (CV) as a pollutant dye. Moreover, the present study assesses the effect of operating conditions including the pH of the dye solution, UV-irradiation time, ionic strength, type and dosage of nanophotocatalyst on degradation efficiency. Experimental results of the research demonstrate the QDs can be reused for at-least five times, without a significant decrease in their photocatalytic properties. The maximum photodegradation efficiency for the CV solution adjusted at pH 11, in the presence of a low amount of QDs (i.e. 5 mg) was observed after 90 min irradiation time. Finally, the probable mechanism and kinetics of degradation reaction are proposed in the study. From the kinetic data, the acceptable regression coefficient values (> 0.98) for the pseudo first-order kinetic model was obtained for expression the present QD-based photodegradation approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available