4.7 Article

Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene

Journal

ULTRASONICS SONOCHEMISTRY
Volume 58, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ultsonch.2019.104630

Keywords

Graphene; Ultrasound; Exfoliation

Funding

  1. Open Research Fund of Zhengzhou Normal University
  2. China Postdoctoral Science Foundation
  3. Jiangsu Planned Projects for Postdoctoral Research Funds

Ask authors/readers for more resources

Graphene is a two-dimensional material with unique structure and excellent properties. After first being successfully prepared in 2004, it rapidly became a research hotspot in the fields of materials, chemistry, physics, and engineering. Currently, there are many methods for preparing graphene, such as ball milling method, chemical oxidation-reduction, chemical vapor deposition, and liquid-phase exfoliation. Among these methods, liquid-phase exfoliation is the most important preparation method. In this paper, ultrasound-assisted liquid-phase exfoliation is systematically studied. The output power and frequency of the ultrasonic crusher used in the experiment are 100 W and 20 kHz, respectively. Results show that ultrasonic waves can affect the size and thickness distribution of graphene sheets; ultrasound-assisted deoxycholic acid sodium aqueous solution has a good exfoliation effect. In addition, the effects of the 3 liquid-phase systems on preparing graphene are studied, including organic solvent system, aqueous surfactant system, and ionic liquids system; the improvement efforts for ultrasound-assisted liquid-phase exfoliation method are discussed including the exploration of new solvents and optimization of exfoliation process. The application of auxiliary agent-assisted liquid-phase exfoliation method is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available