4.7 Article

Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.tafmec.2019.102246

Keywords

Delamination; VCCT; CZM; XFEM; DCB specimen

Ask authors/readers for more resources

Virtual crack closure technique (VCCT), cohesive zone modeling (CZM) and extended finite element method (XFEM) are three well-known numerical methods frequently used for crack propagation modeling. It is often questioned by new researchers and engineers: which method is more appropriate for modeling of delamination propagation in composites? In this study, advantages, limitations, and challenges of each method are discussed with the goal of finding a suitable and cost-effective solution for modeling of delamination propagation in laminated composites. To this end, a composite double cantilever beam (DCB) specimen as a benchmark example is modeled in ABAQUS and delamination propagation is simulated using three above methods and the combination of XFEM with VCCT and CZM. Two-dimensional plain strain and three-dimensional DCB models are both considered. Finite element results are compared with experimental results available in the literature for unidirectional DCB specimens. Finally, the accuracy, convergence speed, run-time and mesh dependency of each method are discussed. The XFEM-CZM was found as a suitable method for simulation of delamination growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available