4.1 Review

Accounting for time-dependent treatment use when developing a prognostic model from observational data: A review of methods

Journal

STATISTICA NEERLANDICA
Volume 74, Issue 1, Pages 38-51

Publisher

WILEY
DOI: 10.1111/stan.12193

Keywords

Cox regression; inverse probability weights; marginal structural model; prediction; prognosis

Funding

  1. Netherlands Organisation for Scientific Research [917.16.430, 9120.8004, 918.10.615]

Ask authors/readers for more resources

Failure to account for time-dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective beta-blockers (SBBs) during follow-up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time-dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c-statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available