4.7 Article

Improving sensitivity of mercury detection using learning based smartphone colorimetry

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 298, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2019.126942

Keywords

Gold nanoparticles; Localized surface plasmon resonance; Lab-on-a-phone; colorimetry; RGB value; Multiple linear regression; Mercury concentration

Ask authors/readers for more resources

Detection of various contaminations in drinking water such as heavy metal ions and toxic chemicals is costly, time-consuming and requires an accompanying computing device to capture and analyze the data. Hence, there is an extensive need for a rapid, user-friendly, cost-effective, sensitive and ubiquitous detection technique. Smartphones are an effective means to measure, analyze and share the results. In this work, a gadget was designed and printed using a lightweight 3D material, which can be attached to any smartphone and integrated with optical components. A full color TFT LCD display was used as the uniform source of any color of light. Aptamer conjugated gold nanoparticles were employed to determine the concentration of Hg2+ as the basis of a colorimetric sensor. Interaction between the aptamer and the analytes leads to a color change in the solution due to aggregation of gold nanoparticles. For the corresponding color change detection, a novel image processing protocol using RGB value was introduced for each captured image. Multiple linear regression analysis was also exploited to achieve a better sensor response model. Light source enhancement, colorimetry at more points of visible spectrum (470, 540, 640 nm) and a powerful post process technique including machine learning made it possible to obtain an excellent level of sensitivity (1 nM-0.2 ppb).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available