4.8 Article

A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe

Journal

BIOSENSORS & BIOELECTRONICS
Volume 78, Issue -, Pages 431-437

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2015.11.076

Keywords

Fluorescent aptasensor; Graphene oxide; Exonuclease I

Funding

  1. National Natural Science Foundation of China [21275110, 81572086, 21505080]
  2. Fundamental Research Funds for the Central Universities [2042014kf0246]
  3. Financial support from the Foundation of He'nan Educational Committee [15A150066]

Ask authors/readers for more resources

We developed a fluorescent aptasensor based on the making use of double-stranded DNA (dsDNA)/graphene oxide (GO) as the signal probe and the activities of exonuclease I (Exo I). This method takes advantage of the stronger affinity of the aptamer to its target rather than to its complementary sequence (competitor), and the different interaction intensity of dsDNA, mononucleotides with GO. Specifically, in the absence of target, the competitor hybridizes with the aptamer, preventing the digestion of the competitor by Exo I, and thus the formed dsDNA is adsorbed on GO surface, allowing fluorescence quenching. When the target is introduced, the aptamer preferentially binds with its target. Thereby, the corresponding nuclease reaction takes place, and slight fluorescence change is obtained after the introduction of GO due to the weak affinity of the generated mononucleotides to GO. Adenosine (AD) was chosen as a model system and tested in detail. Under the optimized conditions, smaller dissociation constant (K-d, 311.0 mu M) and lower detection limit (LOD, 3.1 mu M) were obtained in contrast with traditional dye-labeled aptamer/GO based platform (K-d=688.8 mu M, LOD=21.2 mu M). Satisfying results were still obtained in the evaluation of the specificity and the detection of AD in human serum, making it a promising tool for the diagnosis of AD-relevant diseases. Moreover, we demonstrated the effect of the competitor on the LOD, and the results reveal that the sensitivity could be enhanced by using the rational competitor. The present design not only constructs a label-free aptamer based platform but also extends the application of dsDNA/GO complex in biochemical and biomedical studies. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available