4.6 Article

Marine Oil Slick Detection Based on Multi-Polarimetric Features Matching Method Using Polarimetric Synthetic Aperture Radar Data

Journal

SENSORS
Volume 19, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/s19235176

Keywords

oil spill detection; polarimetric synthetic aperture radar; multi-polarimetric features model; spectral pan-similarity measure

Funding

  1. project: Development of Ship (Navigation) Situational IntelliSense System
  2. National Natural Science Foundation of China [41571336]
  3. Dalian Science and Technology Innovation Foundation [2018J11CY024]

Ask authors/readers for more resources

Polarimetric synthetic aperture radar is an important tool in the effective detection of marine oil spills. In this study, two cases of Radarsat-2 Fine mode quad-polarimetric synthetic aperture radar datasets are exploited to detect a well-known oil seep area that collected over the Gulf of Mexico using the same research area, sensor, and time. A novel oil spill detection scheme based on a multi-polarimetric features model matching method using spectral pan-similarity measure (SPM) is proposed. A multi-polarimetric features curve is generated based on optimal polarimetric features selected using Jeffreys-Matusita distance considering its ability to discriminate between thick and thin oil slicks and seawater. The SPM is used to search for and match homogeneous unlabeled pixels and assign them to a class with the highest similarity to their spectral vector size, spectral curve shape, and spectral information content. The superiority of the SPM for oil spill detection compared to traditional spectral similarity measures is demonstrated for the first time based on accuracy assessments and computational complexity analysis by comparing with four traditional spectral similarity measures, random forest (RF), support vector machine (SVM), and decision tree (DT). Experiment results indicate that the proposed method has better oil spill detection capability, with a higher average accuracy and kappa coefficient (1.5-7.9% and 1-25% higher, respectively) than the four traditional spectral similarity measures under the same computational complexity operations. Furthermore, in most cases, the proposed method produces valuable and acceptable results that are better than the RF, SVM, and DT in terms of accuracy and computational complexity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available