4.8 Article

Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles

Journal

BIOSENSORS & BIOELECTRONICS
Volume 86, Issue -, Pages 978-984

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2016.07.105

Keywords

Fluorescent aptasensor; Terbium ion-coordinated carbon dots; Gold nanoparticles; Fluorescence resonance energy transfer; Adenosine 5 '-triphosphate

Funding

  1. National Natural Science Foundation of China [41176079, 21475025]
  2. National Science Foundation of Fujian Province [2014J07001]
  3. Program for Changjiang Scholars and Innovative Research Team in University [IRT15R11]

Ask authors/readers for more resources

This work reports on a novel time-resolved fluorescent aptasensing platform for the quantitative monitoring of adenosine 5'-triphosphate (ATP) by interaction of dispersive/agglomerate gold nanoparticles (AuNPs) with terbium ion-coordinated carbon dots (Tb-CDs). To construct such a fluorescent nanoprobe, Tb-CDs with high-efficient fluorescent intensity are first synthesized by the microwave method with terbium ions (Tb3+). The aptasensing system consists of ATP aptamer, AuNP and Tb-CD. The dispersive/agglomerate gold nanoparticles are acquired through the reaction of the aptamer with target ATP. Upon target ATP introduction, the aptamers bind with the analytes to form new aptamer-ATP complexes and coat on the surface of AuNPs to inhibit their aggregation in the high salt solution. In this case, the fluorescent signal of Tb-CDs is quenched by the dispersive AuNPs on the basis of the fluorescence resonance energy transfer (FRET). At the absence of target analyte, gold nanoparticles tend to aggregate in the high salt state even if the aptamers are present. Thus, the added Tb-CDs maintain their intrinsic fluorescent intensity. Experimental results indicated that the aptasensing system exhibited good fluorescent responses toward ATP in the dynamic range from 40 nM to 4.0 mu M with a detection limit of 8.5 nM at 3s(blank) criterion. The repeatability and intermediate precision is less than 9.5% at three concentrations including 0.04, 0.4 and 2.0 mu M ATP. The selectivity was acceptable toward guanosine 5'-triphosphate, uridine 5'-triphosphate and cytidine 5'-triphosphate. The methodology was applied to evaluate the blank human serum spiked with target ATP, and the recoveries (at 3 concentration levels) ranged between 97.0% and 103.7%. Importantly, this detection scheme is rapid, simple, cost-effective, and does not require extensive sample preparation or separation. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available