4.7 Article

Sulfadiazine degradation in soils: Dynamics, functional gene, antibiotic resistance genes and microbial community

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 691, Issue -, Pages 1072-1081

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.07.230

Keywords

Sulfonamides; Biodegradation; SadA gene; Sulfonamide resistance genes; Agricultural soil

Funding

  1. National Natural Science Foundation of China [51778006]
  2. National Key Research and Development Program of China [2018YFC1803100]
  3. State Key Joint Laboratory of Environmental Simulation and Pollution Control [19Y01ESPCP]

Ask authors/readers for more resources

Sulfonamides and their corresponding antibiotic resistance genes (ARGs) are widespread in the environment, which leads to a major threat to global health crisis. Biodegradation plays a major role in sulfonamides removal in soil ecosystem, but the degradation dynamics and the associated functional bacteria in situ remain unclear. In this study, aerobic degradation of sulfadiazine (SDZ) at two dosages (1 and 10 mg/kg) was explored for up to 70 days in two different agricultural soils. The removal of SDZ in all treatments followed first-order multi-compartment model with half-life times of 0.96-2.57 days, and DT50 prolonged with the increase of initial dosage. A total of seven bacterial genera, namely Gaiella, Clostrium_sensu_stricto_1, Tumebacillus, Roseiflexus, Variocorax, Nocardioide and Bacillus, were proposed as the potential SDZ-degraders. sadA gene was for the first time detected in soil samples, but other functional genes might also participate in SDZ degradation. The enrichment of sulfonamide resistance genes was found after 70 days' incubation, which might result in the spread of ARGs in soil. This study can add some newinsights towards SDZ degradation in soil ecosystem and provide a potential resource for the bioremediation of SDZ-contaminated soil. (c) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available