4.7 Article

Saxitoxin-producing Raphidiopsis raciborskii (cyanobacteria) inhibits swimming and physiological parameters in Daphnia similis

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 706, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135751

Keywords

Blue green algae; Neurotoxin; Zooplankton; Behavior; Physiology

Funding

  1. Fundacao Oswaldo Cruz (PAEF) [IOC-008-FIO-04]
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico

Ask authors/readers for more resources

In this study we tested the effects of a neurotoxic strain of the cyanobacterium Raphidiopsis raciborskii (CYRF-01) on the swimming activity and physiological parameters of Daphnia similis such as movements of the antennae, thoracic limbs, post-abdominal claw and heart rate. An acute assay was performed to test the effect on swimming activity, exposing newborns (<24 h) to different concentrations of live cells and observing the number of immobilized animals over a period of 48 h. For testing the effects on physiological parameters adult females (10-15 days) were exposed in a Bow-through system and recorded with a digital camera. Results showed rapid effect of the strain CYRF on all parameters. Animals started to be immobilized in the first 30 min exposure and showed complete paralysis after 2 h in 500 mu g L-1 and after 24 h in the other concentrations. Physiological parameters accompanied the same response pattern with effects starting after 30 min and some recovery at the end of 6 h exposure. Antennae stopped moving after 2-3 hat 250-500 mu g L-1 explaining the paralysis of the swimming activity in Daphnia. Thoracic limbs movements were significantly inhibited after 30 min in all concentrations, staying at lower levels than control through the experiment. Post-abdominal claw movement were completely ceased after 30 min and remained stopped until the end of the trial. Heart rate showed a tendency to decrease abruptly in the first 30 min exposure in all concentrations, but showed significant lower values than control only at 500 mu g L-1, between 3 and 4 h exposure, and a recovery at the end of 6 h. In conclusion, results show that neurotoxic cyanobacteria can impose severe constrains on the physiology of daphniids, which can have consequences to the oxygen uptake, swimming and feeding behavior and to the overall fitness of those organisms. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available