4.7 Article

Mineralogical phase separation and leaching characteristics of typical toxic elements in Chinese lignite fly ash

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 708, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135095

Keywords

Lignite fly ash; Toxic element; Mineralogical phase separation; Leaching characteristic

Funding

  1. major science and technology projects in Inner Mongolia Autonomous Region [2060901]

Ask authors/readers for more resources

To investigate the distribution characteristics of typical toxic elements in different mineralogical phases of fly ash is of significance when fly ash is comprehensively utilized. In this study, lignite fly ash can be preliminarily separated into three mineralogical phases: unburned lignite, iron microbeads and aluminate-silicate microbeads by two methods namely screening and dry magnetic separation. Then, the aluminate-silicate microbeads were subjected to two-step leaching. The first step was to investigate whether toxic elements migrated easily in the environment by column leaching test. In the second step, the aluminate-silicate microbeads were stripped from the surface of the particles to the internal by the acid-base combined leaching method, then the structural characteristics of the product and the trend of toxic elements content were explored. The results showed that there were few toxic elements in unburned lignite and the toxic elements Cr, Ni, Mo and Cd had a relatively high proportion in the iron microbeads. Column leaching results showed that the toxic elements V, Cr, Mn, Co, Cu, Hg and Pb had higher leaching rates, which proved that these elements were significantly enriched on the surface of the particles and easily migrated in the environment. Cr, Mo, Cd and W were highly enriched in the quartz-mullite mixture. Mn, Co, Ni, Cu, Zn and As were highly enriched in the amorphous component. The toxic elements exhibited different leaching rules during the acid-base combined leaching process revealing the complex embedded relationship with constant elements. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available