4.7 Article

Subsurface zones in intermittent streams are hotspots of microbial decomposition during the non-flow period

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 703, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135485

Keywords

Organic matter decomposition; Microhabitats; Flow intermittency; Fungal biomass; Hyporheic zone

Funding

  1. Ministry of Economy, Industry and Competitiveness of Spain (MINECO) [CGL2014-58760-C3-1-R, CGL2017-88640-C2-2-R]
  2. MINECO, FPI [BES-2015-073961]
  3. Juan de la Cierva-Formacion research contract (MINECO) [FJCI-2015-25785]
  4. STREAMECO project (Biodiversity and ecosystem functioning under climate change: from the gene to the stream) - Fundacao para a Ciencia e a Tecnologia (Portugal) [POCI-01-0145-FEDER-029505]

Ask authors/readers for more resources

The microbial decomposition of organic matter is a fundamental ecosystem process that transforms organic matter and fuels detritus-based food webs, influencing biogeochemical cycles such as C-cycling. The efficiency of this process can be compromised during the non-flow periods of intermittent and ephemeral streams (IRES). When water flow ceases, sediments represent the last wet habitat available to microorganisms and may play an important role in sustaining microbial decomposition. However, despite the increasing prevalence of IRES due to climate change and water abstraction, it is unclear to what degree the subsurface habitat can sustain microbial decomposition during non-flow periods. In order to gather information, we selected 20 streams across Catalonia (Spain) along a gradient of flow intermittency, where we measured microbial decomposition and fungal biomass by placing wood sticks in both the surface and subsurface zones (15 cm below the streambed) over the course of one hydrological year. Our results showed that microbial decomposition and fungal biomass were consistently greater in the subsurface zone than in the surface zone, when intermittency increased. Although flow intermittency was the main driver of both microbial decomposition and fungal biomass, phosphonis availability in the water, sediment C:N ratio and sediment grain size also played relevant roles in surface and subsurface organic matter processing. Thus, our findings demonstrate that although the OM processing in both zones decreases with increased intermittency, the subsurface zone made an important contribution during the non-flow periods in IRES. Therefore, subsurface activity during non-flow periods has the potential to affect and maintain ecosystem functioning. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available