4.7 Article

Comparison of the methane-oxidizing capacity of landfill cover soil amended with biochar produced using different pyrolysis temperatures

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 693, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.133594

Keywords

Methane; Landfill cover soil; Biochar; Methane-oxidizing bacteria

Funding

  1. National Key Research and Development Program of China [2018YFC1902903]
  2. Shenzhen Municipal Development and Reform Commission (Discipline construction of watershed ecological engineering)

Ask authors/readers for more resources

The in-situ mitigation of methane (CH4) in landfill gas using landfill cover soil (LCS) is a cost-effective approach, but its efficiency needs to be enhanced. In this study, we incorporated an enriched methane-oxidizing bacteria (MOB) consortium into LCS and established four biochar-amended LCS groups with biochar produced at 300 degrees C (BC300), 400 degrees C (BC400), 500 degrees V (BC500), and 600 degrees C (BC600). The purpose was to evaluate the CH4 oxidation capacity of biochar-amended LCS after inoculation with MOB and to investigate how the physicochemical properties of biochar that are influenced by the pyrolysis temperature affect the performance and microbial activity of biochar-amended LCS. It was found that a 15% volume ratio (representing a mass ratio of 2.49%-2.78%) for biochar amendment in LCS enhanced CH4 removal efficiency, with the highest removal observed to be 46% for BC400-amended LCS compared to 30% for the original LCS. In addition, CH4 adsorption by the biochar was not observed, and a 15% mass ratio for biochar in the LCS had no or a negative impact. Besides improving the water-holding capacity and gas permeability of LCS, other possible advantages of biochar amendment in terms of CH4 oxidization include greater retention of nutrients, electron acceptors, and exchangeable cations, as well as introducing iron ions. It was also found that CH4 oxidation capacity and the methanotroph activity of biochar-amended LCS did not continue to increase with higher pyrolysis temperatures, even though higher micropore volumes and surface areas were obtained at higher pyrolysis temperatures. From this study. BC400 was identified as the optimal choice for the best performance in terms of enhancing both the CH4 oxidation capacity of the amended LCS and the growth of type II methanotroph Methylocystaceae, which can possibly be attributed to having the highest cation exchange capacity of the four biochars. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available