4.7 Article

Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 692, Issue -, Pages 546-555

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.07.263

Keywords

Adaptive management; Ecosystem services; Hydrology; Marsh resilience; Mitigation measures; Water stress

Funding

  1. ECOPOTENTIAL - European Union's Horizon 2020 research and innovation programme [641762]
  2. Provence-Alpes-Cote d'Azur Region
  3. Provalat Foundation
  4. H2020 Societal Challenges Programme [641762] Funding Source: H2020 Societal Challenges Programme

Ask authors/readers for more resources

Wetlands have been declining worldwide over the last century with climate change becoming an additional pressure, especially in regions already characterized by water deficit. This paper investigates how climate change will affect the values and functions of Mediterranean seasonally-flooded wetlands with emergent vegetation. We simulated the future evolution of water balance, wetland condition and water volumes necessary to maintain these ecosystems at mid- and late- 21st century, in 229 localities around the Mediterranean basin. We considered future projections of the relevant climatic variables under two Representative Concentration Pathway scenarios assuming a stabilization (RCP4.5) or increase (RCP 8.5) of greenhouse gases emissions. We found similar increases of water deficits at most localities around 2050 under both RCP scenarios. By 2100, however, water deficits under RCP 8.5 are expected to be more severe and will impact all localities. Simulations performed under current conditions show that 97% of localities could have wetland habitats in good state. By 2050, however, this proportion would decrease to 81% and 68% under the RCP 4.5 and RCP 8.5 scenarios, respectively, decreasing further to 52% and 27% by 2100. Our results suggest that wetlands can persist with up to a 400 mm decrease in annual precipitation. Such resilience to climate change is attributed to the semipermanent character of wetlands (lower evaporation on dry ground) and their capacity to act as reservoir (higher precipitation expected in some countries during winter). Countries at highest risk of wetland degradation and loss are Algeria, Morocco, Portugal and Spain. Degradation of wetlands with emergent vegetation will negatively affect their biodiversity and the services they provide by eliminating animal refuges and primary resources for industry and tourism. A sound strategy to preserve these wetlands would consist of proactive management to reduce non-climate stressors. (C) 2019 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available