4.8 Article

A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots

Journal

BIOSENSORS & BIOELECTRONICS
Volume 85, Issue -, Pages 903-908

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2016.06.010

Keywords

Nitrogen-doped graphene quantum dots; Electrochemiluminescence; Nitroaniline; Diazotization

Ask authors/readers for more resources

Nitrogen-doped graphene quantum dots (N-GQDs), as a new class of carbon nanomaterials, have potential application in sensor, fuel cells, optoelectronics field due to their stable photoluminescence (PL) and electrocatalytic activity. Herein, a facile novel electrochemiluminescence (ECL) signal-on method for nitroaniline (NA) sensing based on N-GQDs and chitosan was developed. Chitosan displays high water permeability, hydrophilic property and good adhesion to load the N-GQDs to the glassy carbon electrode (GCE) surface. N-GQDs have shown as highly active reagent and catalyst for rapid diazotization reaction of anilines. When NA was added to the electrolyte solution consisting of mineral acid and sodium nitrite, N-GQDs/chitosan modified electrode exhibited obvious enhancement of ECL intensity, which was ascribed to the occurrence of diazotization reaction of NA. Therefore, NA can be detected with high selectivity based on the N-GQDsichitosan ECL system. To the best of our knowledge, it is the first report about the NA detection based on the catalysis and ECL capabilities of N-GQDs. There was a wide linear ECL intensity response ranging from 0.01 to 1 mu mol L-1 NA. The practicability of the ECL sensing platform in real water samples has shown the satisfactory results. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available