4.7 Article

Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 686, Issue -, Pages 199-211

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.05.394

Keywords

Nitrous oxide; AOA; AOB; nirS; nirK; nosZ

Funding

  1. National Natural Science Foundation of China [41773090, 31300375]
  2. National Water Pollution and Treatment Science and Technology Major Project [2015ZX07203-007]

Ask authors/readers for more resources

This study intended to evaluate the combined effects of both biochar and organic fertilizer on nitrous oxide (N2O) fluxes and composition of nitrifier and denitrifier of saline-alkali soil. Therefore, four different treatments such as CK (only chemical fertilizer), B (only biochar), M (only organic fertilizer), BM (B:M = 1:1) were used in this experiment. The results showed that N2O emissions were decreased in B and BM treatments compare to the control. In contrast, N2O emissions were highest before day 12 but lowest after day 19 in M treatment compare to the control. Application of biochar, organic fertilizer and biochar plus organic fertilizer decreased die nirS and nirK genes copies and enhanced the nosZ gene copies which resulting in the lower N2O fluxes. The ammonia-oxidizing bacteria (AOB) amoA and nirK genes copies were significantly increased by organic fertilizer before day 12, leading to high N2O emissions. The genera Nitrosospira (AOB) and Nitrososphaera (ammonia-oxidizing archaea, AOA) assumed absolute superiority. Additionally, N itrosospira (AOB) was also appeared in nirK-type denitrifiers, illustrating denitrification was carried out by nitrifiers. The genera Azospirillum (nirS), Burkholderia (nosZ) and Polymorphum (nosZ) were dominant in CK. There was only one dominant genus, Mesorhizobium (nosZ) in the B treatment. The genera Mesorhizobium (nirK), Azoarcus (nirS), Kocuria (nirS) and Pseudomonas (nosZ) occupied the main status in the M treatment. The relative abundance of Rhodanobacter (nirS) and Azospirillum (nosZ) were higher in the BM treatment compared with other treatments. Soil water content (SWC), pH, NH4+-N and NO3--N were the main factors affecting AOB and denitrifiers, which influencing N2O emissions. Overall, combined application of biochar and organic fertilizer can reduce the N2O emission where AOB and nirK-type denitrifier were the main contributors to the N2O emission. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available