4.7 Article

Integrated energy-oriented cruising control of electric vehicle on highway with varying slopes considering battery aging

Journal

SCIENCE CHINA-TECHNOLOGICAL SCIENCES
Volume 63, Issue 1, Pages 155-165

Publisher

SCIENCE PRESS
DOI: 10.1007/s11431-019-9559-2

Keywords

eco-driving; electric vehicle; battery fading model; dynamic programming; energy management

Funding

  1. National Natural Science Foundation of China [51805081, 51575103, U1664258]
  2. National Key Research and Development Program in China [2016YFB0100906, 2016YFD0700905]

Ask authors/readers for more resources

Eco-driving strategies for vehicles with conventional powertrains have been studied for years and attempt to reduce fuel consumption by optimizing the driving velocity profile. For electric vehicles (EVs) with regenerative braking, the speed profile with the best energy efficiency should be different from conventional vehicles. This paper proposes an energy-oriented cruising control strategy for EVs with a hierarchical structure to realize eco-cruising on highways with varying slopes. The upper layer plans the energy-optimized vehicle velocity, and the lower layer calculates the torque allocation between the front and rear axles. However, the resulting speed profile with varying velocity may cause a high charge and discharge rate of the battery, resulting in rapid battery fading. To extend the battery life, we make a tradeoff between the energy consumption and wear of the battery by formulating an optimal control problem, where driving comfort and travel time are also considered. An indirect optimal control method is implemented to derive the optimal control rule. As an extension, the control rule for avoiding rear-end collisions is presented and simulated for driving in the real world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available