4.7 Article

Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids

Journal

RENEWABLE ENERGY
Volume 151, Issue -, Pages 43-56

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.10.137

Keywords

Heat transfer; Linear Fresnel reflector; Nanofluid; Distilled water; MWCNTs; Thermal enhancement

Funding

  1. University of Sharjah [18020406118]

Ask authors/readers for more resources

In this study industrial grade Multi-walled carbon nanotubes (MWCNTs) nanoparticles dispersed in distilled water (DW) are investigated to evaluate its impact on the thermal behavior of linear Fresnel solar reflector technology. The stability and thermophysical properties of the MWCNTs/DW nanofluids are obtained experimentally. Stable nanofluids that showed higher thermal conductivity compared to DW were obtained. Thermal conductivity (TC) of the nanofluids increased by 3%, 6% and 7% for the volume fractions of 0.05%, 0.1% and 0.3% at 25 degrees C, respectively. TC also increased with the increase in temperature (i.e. 11% for 0.3% volume fraction at 70 degrees C). A one-dimensional model is developed to evaluate the transient behavior of the nanofluid within the linear solar reflector. Matlab code based on the finite difference method is developed to solve the energy balance equations at the different components of the studied solar collector. The numerical model is then validated with experimental results, where a maximum experimental thermal efficiency of 29.205% at 14:00 is achieved. MWCNTs/DW nanofluid with 0.3% volume fraction has the highest thermal efficiency of 33.81% and the highest PEC value as well as the lowest entropy generation. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available